2014年3月25日 討論文件

立法會交通事務委員會 香港的公共照明

目的

本文件介紹本港街道的公共照明概況,包括公共照明系統的設計標準、運作、維修、美化及節約能源方面的安排。

背景

- 2. 本港公共照明系統的設計標準、運作及維修,以及大部份的設計及 建造,均由路政署負責。公共照明系統是道路網絡的輔助設施,需要持 續優化及妥善管理,為市民提供可靠、安全、舒適及環保的公共照明。
- 3. 公共照明設施包括行車道路燈、行人路路燈、單車徑路燈、行車隧道燈、高桅杆燈、公共運輸交匯處高懸燈、行人天橋及隧道燈、高架及路邊道路標誌照明及安全島標柱等共約226,200 蓋。上述各類照明設施的數量及照片夾附在附件一。

公共照明系統的設計標準

4. 本港的公共照明系統,均參照由路政署訂定的《公共照明設計手册》而設計,並須根據各道路的級別(包括功能、交通流量、交通分隔情况)、行人流量及四周環境光度而選擇適當的照明級別。現行《公共照明設計手册》中的設計標準,是根據最普遍使用的國際道路照明標準(即 BS EN 13201:2003,"道路照明—第二部分:表現基準")訂立,該等標準普遍於歐洲及亞洲各國採用。

公共照明系統的運作

5. 一般路燈的開關是由安裝於路旁控制箱上的感光控制器所操控,路旁控制箱的照片夾附在**附件二**。當四周光度降至 55 勒克司 ¹時,路燈

¹ 勒克司(lux)為國際照明單位。一般道路照明約為 10-30 勒克司。

便會自動亮起;而當四周光度升至83勒克司時,便會自動關掉。在正常的天氣情況下,路燈大致會在日落後8分鐘至日出前15分鐘之間運作。至於行人隧道及行車隧道燈,則是24小時不停運作。

6. 本港公共照明於 2013 年的用電量約為 1 億 3,000 萬度 ², 而電費開支每年約為 1 億 3,000 萬元。

公共照明系統的維修

- 7. 為維持高水平的公共照明服務,路政署透過預防性維修以保持照明效果及預防設施失效,以及安排夜間巡查配合糾正性維修,務求適時復修損壞的照明設施。
- 8. 預防性維修包括:定期清潔燈具、更換燈泡、檢查及測試照明設施 及調較感光控制器等;更換有銹蝕現象的燈柱及老化的電纜及為燈柱髹 上保護油漆等;於日間巡視照明設施有否損壞,以及檢查公共照明設施 有否於日間出現非正常亮起等情況。
- 9. 此外,路政署亦會安排承建商夜間巡查,檢查照明系統是否運作正常,同時配合糾正性維修,以適時復修發生故障的照明設施。根據最新的路燈維修合約規定,承辦商須於接獲緊急故障通報的兩小時內到達現場,並於接獲通報的三小時內完成簡單的現場調較或更換配件工作。至於其他較複雜的緊急故障維修工作,亦須於接獲有關通報的12小時內完成。緊急故障是指涉及安全或有嚴重影響公共照明系統的事故,包括火警、燈柱倒塌、漏電、連串路燈熄滅等情况。至於非緊急故障,承辦商則須於接獲通報的24小時內完成有關的維修工作。

美化環境

10. 為配合旅遊觀光點及具代表性的地區道路的美化工程,路政署已在這些道路安裝 6,800 多盞不同款式的特色路燈,以配合及美化附近的街道景觀。有關特色路燈例子的照片夾附在**附件三**。

節約能源

² 1 度電等於 1 千瓦時(1 kWh)。

- 11. 路政署一直為公共照明系統尋求各種節約能源的方法,包括實施 及試驗下列各種措施。
- 12. 現時,本港的路燈已普遍採用高能源效益的高壓鈉燈(high pressure sodium lamp),其效能由低瓦數(watt)³燈泡的約每瓦 90 流明 (lumen)⁴至高瓦數燈泡的每瓦 150 流明,均比家用慳電膽約每瓦 60 流明的功率為高。採用這些高壓鈉燈,較以往使用的舊路燈設備節省了約 30%的用電量。
- 13. 路政署亦一直留意市場上高能源效益新路燈產品的發展。例如市場近年推出了一種名為陶瓷金屬鹵化物燈(ceramic discharge metal halide lamp)的低瓦數白光燈,其能源效益與高壓鈉燈相若,但光譜(spectrum)較廣闊及顯色性(colour rendering)⁵較佳。由於這種白光燈的顯色性較佳,若選擇適當的地方採用較現有高壓鈉燈瓦數略低的白光燈,可以節省能源而不會影響市民對有關路段照明的滿意度。這種低瓦數的白光燈一般可用於輔助道路如地區支路、單車徑、行人路、露天停車場及後巷等。現時,路政署已在部分的輔助道路安裝約2,650 蓋白光燈,以及計劃選擇更多不同地區及種類的輔助道路,以試驗白光燈的效能及市民的接受程度。
- 14. 路政署亦一直留意發光二極管(LED)路燈技術的發展,並選擇符合設計標準、經過認證的 LED 路燈進行試驗,以觀察其實際使用效能。目前,市場上供應的 LED 路燈以白色光源的低及中瓦數品種為主,但品質參差。與高壓鈉燈相比,低及中瓦數 LED 路燈的能源效益相若。不過,由於 LED 路燈的顯色性較佳,因此可以採用較現有高壓鈉燈瓦數略低的 LED 路燈以增加節能效果。但 LED 路燈的成本效益低,以中瓦數的 LED 路燈為例,現時的價格大約為 14,000 元一盞,較高壓鈉燈高約 10 倍。再者,如果以一盞表現較佳的中瓦數 LED 路燈取代一盞瓦數略高的高壓

³ 公共照明系統所採用的高壓鈉燈瓦數(watt),由 50 瓦至 600 瓦不等,視乎照明需要而定。

⁴ 流明(lumen)為國際光通量(luminous flux)單位,是人眼感知的光能量度。每一流明照射在一平方米上的照明度為一勒克司(lux)。一支燭光發出約 12.6 流明,而一個 100 瓦的白熾燈泡(incandescent lamp) (即一般家用的鎢絲燈泡)會發出約 1,300 流明。

^{較佳的顯色性(colour rendering)是指人或物件在光譜(spectrum)較廣闊的光源照射下,所顯示出的顏色會更豐富,失真亦會較輕微。}

鈉燈,每年只可節省電費約 200 元,其成本效益遠低於現時普遍採用的高壓鈉燈,亦比陶瓷金屬鹵化物燈為低。因此,現時並非廣泛採用 LED 路燈的適當時機,但路政署將會繼續留意有關技術的發展。

15. 除了採用高效能的燈具之外,路政署亦在調節光度方面下功夫,以節省能源及避免影響附近居民。路政署曾經進行一個研究,發現當時全港有約 20,000 盞 6路燈,由於市場未能提供適合瓦數的燈泡而採用了較高瓦數的燈泡,因此有空間下調光度,以進一步節約能源。從 2006 年開始,路政署逐步為這些路燈安裝電子鎮流器(electronic ballast),採用減低電流的方法,下調燈泡的光度。我們預計於 2014 年年底,這批路燈將會全部裝有電子鎮流器,每年可節省約 20%的電量。

持續優化

16. 為配合社會的發展需要,路政署將會持續優化公共照明系統的設計標準,以及有關運作及維修的工作,提高服務水平及節約能源,以繼續為市民提供可靠、安全、舒適及環保的公共照明。

路政署 2014年3月

_

⁶ 由於燈泡的瓦數以固定級數遞增,當路段所需的光度介乎於兩級燈泡瓦數之間, 路政署會採用較高瓦數的燈泡,以確保該路段有足夠的光度。因此,部分路燈的 瓦數會略高於實際所需。為節省不必要的電量,路政署會利用電子鎮流器,把這 些路燈的光度調低至實際需要的水平。但由於電子鎮流器易受雷電破壞,因此為 減低壞燈情況,電子鎮流器不宜設置於空曠的快速道路上。

附件一

公共照明裝置的數目及圖片

類別	大約數量
行車道路燈、行人路路燈及單車徑路燈	141,400
行車隧道燈	17,700
高桅杆燈	1,400
公共運輸交匯處高懸燈	8,500
電車站燈、行人天橋燈及隧道燈	44,700
高架及路邊道路標誌照明	1,700
安全島標柱	10,800
總計	226,200

行車道路燈

行人路路燈

單車徑路燈

行車隧道燈

高桅杆燈

公共運輸交匯處高懸燈

行人隧道燈

電車站燈

高架道路標誌照明

安全島標柱

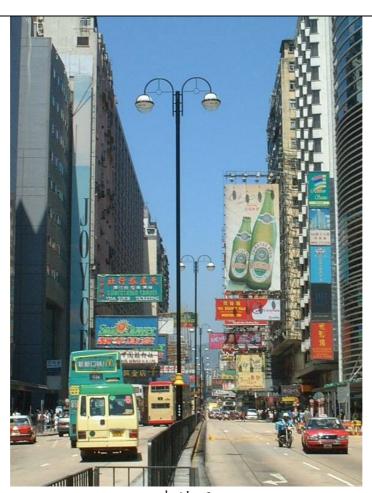
附件二

路旁控制箱

路旁控制箱

<u>附件三</u>

特色路燈例子


鴨脷洲

銅鑼灣

沙田

尖沙咀